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SUMMARY

A series of unbraked (freely rolling) taxi tests were conducted at
the Langley landing-loads track with a 32 X 8.8, type VII, 22-ply-rating
ribbed-tread aircraft tire to obtain data on tire retardation forces
developed during rolling in both slush and water. The forward speeds
of the tests ranged from 59 to 104 knots. Tire inflation pressures of
350 and 115 pounds per square inch were used.

Results indicated a parabolic increase of retardation force with
increasing forward velocity for both slush- and water-covered runway sur-
faces. The retardation force was found to increase approximately lin-
early with increasing water depth. Drag coefficients appropriate to the
equations used are presented. Calculations made to determine the effect
of slush on the take-off distance of a jet transport are in agreement with
data obtained from an actual take-off in slush for this airplane.

This is an interim report which deals with the effect of slush on
the acceleration and the ground-run distance of airplanes during take-off.

INTRODUCTION

The introduction of jet-powered transport aircraft into commercial
usage in this country has focused attention on the problem of take-off
and landing on runways covered with slush or water. This problem has
been tolerated on propeller-type aireraft because its effect on aircraft
performance did not usually result in unsafe operation. However, the
much higher take-off and landing velocities required of the new jets along
with their lower acceleration characteristics makes this problem and its
effect on aircraft performance much more acute. This operating problem
affects aircraft performance in several ways. First, the retardation
forces developed by the aircraft wheels when taking off from slush- or
water-covered runways increase the take-off distance required by the air-
plane and under certain conditions would prevent the airplane from



obtaining the required take-off velocity. Second, the high-velocity
spray of slush or water originating from the airplane wheels can be
damaging to the surfaces of the airplane that are under spray impinge-
ment. Third, under certain conditions of vertical load, tire-inflation
pressure, and forward speed, airplane tires operating on slush- or water-
covered runways reach a condition called aquaplaning during which the
hydrodynamic 1ift force developed between the tire footprint and the
fluid-covered runway surface equals or exceeds the vertical reaction of
the airplane mass acting on the tire. During aquaplaning the tire loses
contact with the runway surface and thus loses its directional stability
and braking effectiveness. Fourth, at subaquaplaning velocities the
friction coefficients developed between aircraft tires and the ground
during braking on slush- or water-covered runways are considerably reduced
from the values obtained on dry runways. The tire tread pattern may
influence this effect to a certain extent.

A general investigation under controlled conditions has been under-
way at the Langley landing-loads track (ref. 1) to determine the effect of
forward velocity; type of runway surface; tire tread material, pattern,
and wear; water and slush on the runway; and so forth on the braked and
unbraked characteristics of aircraft tires. This investigation is con-
tinuing, but, because of great current interest in the effects of slush-
or water-covered runways on jet-transport take-off performance, this
report is being issued to present the results obtained thus far for a
freely rolling (unbraked) wheel operating on a slush- or water-covered
concrete runway.

Also presented herein are methocds for calculating (l) the retarda-
tion force developed on an unbraked tire due to slush or water and
(2) the additional take-off distance required for an airplane operating
on a slush- or water-covered runway over that required on a dry runway.

The calculated and actual take-off distances required for a four-
engine jet transport operating in 0.6 inch of slush are compared.

SYMBOLS
a aircraft horizontal acceleration on dry runway
an aircraft horizontal acceleration on wet runway
a horizontal deceleration of alrcraft due tc slush or water

b chord length of tire cross section at slush or water surface
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f(w)
X,g

x,8,f

x,g,m
x,g,n
X,8,¢€

2,8

drag coefficient

tire constant; 0.02 for type I tires and 0.03 for types III
and VII tires (obtained from ref. 2)

diameter of unloaded tire

fluid depth on runway

function of tire width

ground drag load

retardation force acting on airplane tire due to slush or
water

retardation force developed on a single main-wheel tire
retardation force developed on single nose-wheel tire
total aircraft retardation force due to slush or water

net vertical load acting on tire (static vertical load minus
wing lift force)

moment of Inertia of rotating mass (wheel, brake rotors, tire,
and tube)

number of leading main-wheel tires
number of nose-wheel tires

tire inflation pressure

rated tire inflation pressure (one-fourth tire bursting
pressure)

unloaded tire radius

incremental take-off distance of aircraft

aircraft forward velocity

airplane gross welght



W maximum tire width

Xep vertical-load center-of-pressure shift
a wheel angular acceleration

o} vertical tire deflection

p mass density of fluid (slush or water)

APPARATUS

Test Vehicle

The tests were carried out by making test runs at the Langley
landing-loads track. The main carriage (fig. 1) of this facility weighs
approximately 100,000 pounds and travels on steel rails which are located
on each side of a 2,200-foot-long concrete runway. The runway surface
characteristics are similar to those of actual portland-cement concrete
surfaces in current use for airport runvays.

Tire

The tire used in this investigation was a 32 x 8.8, type VII (extra
high pressure), 22-ply-rating ribbed-tread aircraft tire which was mounted
on the main landing-gear wheel of a century-series jet-fighter airplane.
This wheel was in turn mounted within an instrumented test fixture (fig. 2)
suspended below the main carriage. The weight of the rotating mass -
that is, the wheel, brake rotors, tire, and tube - was 203 pounds. The
moment of inertia of the rotating mass was 2.73 slugs-feet2, Tire infla-
tion pressures of 115 and 350 pounds per square inch were used.

Slush and Water Troughs

A cross section of the test runway surfaces is shown in figure 3.
The space between the edge of the asphalt runway and the concrete dike
shown in this figure forms the slush and water troughs used in the inves-
tigation. The location of the troughs on the runway is shown in figure 4.
These troughs are similar to the water trough described in reference 3.
Artificial slush was prepared in the slush trough by adding snow ice to
1/2 inch of water that had been previously placed in the trough. This
snow ice quickly melted in the trough to a consistency that was similar
both in appearance and specific gravity to natural slush. The snow ice
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used was the fine residue left from chipping block ice. The occasiocnal
larger particles rarely exceeded l/h inch in diameter. Immediately
before a run several samples of slush were taken by means of a 6- by 6- by

6-inch box made from gén-inch stainless steel, fitted with a transparent

top, and having one end open. The edges of the open end were sharpened

to allow the box to be pushed gently through the slush without compressing
the sample. When the bottom of the box was completely covered with slush
as noted through the transparent top, the open end was closed with a hard
rubber cover, trapping the slush and water inside. The box was then
weighed, and this weight was compared with the weight of an equal volume
of water to give the specific gravity of the slush sample. This same
procedure could be used to measure equivalent slush depth.

In figure 5(a) is shown the snow ice being deposited in the slush
trough. The sled shown in figure 5(b) contained an adjustable plate that
could trim the slush to the desired test depth. The appearance of the
slush trough immediately after a test run is shown in figure 5(c).

INSTRUMENTATION

Instrumentation was provided to obtain the vertical and drag forces
developed between the tire and the runway. Also obtained were the verti-
cal and drag accelerations of the wheel axle as well as the wheel angular
acceleration, velocity, and displacement. Side load was not measured
during these tests. All forces were measured by strain-gage dynamometer
beams. DBecause of space limitations within the test fixture, some of
the instruments were mounted on an auxiliary axle which was driven at
axle speed from the main axle by a toothed timing belt. Figure 6 is a
schematic diagram of the test fixture and shows the location of the
various instruments.

The vertical load between the tire and the runway was obtained by
adding the measured vertical load from each vertical-load beam; the sum
of the two drag-beam measurements gave the drag load. Corrections for
the inertia forces introduced by the mass of the wheel, tire, and axle
assembly (due to runway surface irregularities) were derived from accel-
eration values obtained from the vertical and drag accelerometers mounted
at one end of the axle. The inertisas corrections amounted to no more than
10 to 15 percent of the measured values of the vertical and drag load.
The weight of the wheel, tire, and axle assembly was 780 pounds.



The horizontal velocity of the main carriage was measured by noting
the time taken to travel a given incremental distance. Distance measure-
ments were obtained by the use of metal tabs at 10-foot intervals along
the side of the track. When a tab interrupted the 1light beam in a light-
source—photocell combination mounted on the main carriage, a pulse
occurred on an oscillograph-record trace.

TEST PROCEDURE

Before each simulated taxi run, the slush and water depths were
measured. It should be mentioned that the water depth was extremely
difficult to control due to wind effects. A wind blowing along the
length of the track tended to slope the water toward the far end of the
water trough. All runs were made with the wheel unbraked (freely rolling).
The vertical load on the tire while traversing the slush and water
troughs was approximately 9,000 pounds.
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The investigation consisted of a series of runs conducted at differ-
ent forward velocities at tire inflation pressures of 350 and 115 pounds
per square inch. The forward velocities varied from 59 to 104 knots.

The slush depth was held constant at approximately 2 inches, whereas the
water depth varied between approximately 0.3 and 1.5 inches.

TEST RESULTS

Time histories of a typical run on slush- and water-covered runway
surfaces are shown in figure 7. In this particular run the tire aqua-
planed. This fact is substantiated by the wheel-angular-velocity curve
which shows the wheel losing approximately two-thirds of its dry runway
angular velocity while on the slush-covered runway. Tire planing is also
indicated by the displacement curves shown in figure 7. The differences
between the carriage displacement and computed vertical tire deflection
curves are a direct measure of the vertical axle displacement caused by
the hydredynamic lift forces acting between the tire and the ground.

The explanation of the spin-down during aquaplaning of the tire is indi-
cated by the variation of the vertical-lcad center-of-pressure curve
shown in this fiigure. The hydrodynemic 1ift force acting on the tire in
the slush and water troughs moves the vertical-load center of pressure
forward of the axle a distance Xep (fig‘ 8) which for these particular

test conditions is sufficient to make the product Fz,g(xcp) greater
than Fng(ro - 8) and, hence, tire spin-down occurs.
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The variation of retardation force with forward speed for the slush-
and water-covered runway surfaces is shown in figures 9 and 10, respec-
tively. The curves passed through the data are based on the plausible
assumption of a parabolic distribution. The trend of the data shown in
figure 11 indicates that the retardation force developed by a tire rolling
on a water-covered runway can be considered to increase approximately
linearly with increasing water depth.

METHOD FOR CALCULATION OF SLUSH OR WATER RETARDATION FORCE

AND ADDITIONAL TAKE-OFF DISTANCE

Retardation Force Developed on a Single
Unbraked Aircraft Tire

This method is based on the assumption that the retardation force
developed by an unbraked tire rolling on a slush- or water-covered run-
way surface varies directly with the square of the forward velocity and
the first power of the tire frontal area exposed to the slush or water
and the slush or water mass density. It is also assumed that tire aqua-
planing effects on the retardation force may be disregarded. Thus, the
retardation force developed by a tire rolling on slush- or water-covered
runways may be expressed by

F = % Cppdy £(w) Vg© (1)

x,8,f
For these calculations, f(w) was chosen as the chord length of the
tire cross section at the slush or water surface which can be expressed
approximately (fig. 12) as

(2)

5+ d; (5 + d)\° 1/2
f(w) =b = 2w -

W

If equation (2) is substituted into equation (1), the retardation force
on the tire due to the fluid expressed in terms of tire and fluid condi-

tions becomes

(%)

&+ d;  (B+d
W \Y

11/2
)2

Fx,g,r = Cppd1vVy



It was found that a value of Cp of 0.75 was required for the cal-

culations of equation (%) to match the experimental data shown in figure 9
for a 2-inch slush depth. ©5imilarly, for the 1.3- to 1.5-inch water-depth
data shown in figure 10, it was found that a value of Cp Dbetween 0.70

and 0.75 was required. It 1s encouraging to note the similarity of the
Cp values obtained from the slush and water tests.

At the present time no experimental data are available to check the
calculations of this method for the condition of a tire rolling in snow.
However, since it is not expected that the tire will completely remove
the snow from the runway in the path of the tire as is apparently the
case for slush and water (fig. 5(c)), the results should be conservative -
that is, overestimation of the snow retardation force.

[GINOANAVIE il )

Retardation Forces Acting on Aircraft During Take-Off

Results from the track investigation on a single wheel rolling on a
slush-covered runway indicate that all of the slush in the path of the
wheel was usually thrown from the runway with the exception of an icy -
film less than 0.1 inch thick next to the runway. This phenomenon occurred
at all test velocities, including velocities in excess of that required
for tire planing. It is assumed, therefore, that the retardation forces
developed on rear wheels of a landing-gear arrangement, such as a dual-
tandem bogie landing gear, are negligible and that only the leading wheels
of the landing gear need be considered. Accordingly, full slush drag
effects on both nose-wheel tires and on the front four tires of the two
main gear bogies were assumed in the calculations. The four rear tires
of the two main gear bogies are assumed to be free of drag due to slush.

The retardation forces develcoped on each nose and leading main wheel
during the take-off may be calculated from equation (3) by using a value
of Cp of 0.75 for slush and a value of CD between 0.70 and O.75 for

water,

For aircraft having negligible wing 1lift during the take-off roll up
to rotational velocity, vertical tire deflections based on the average
vertical load acting on the tires during take-off may be used in equa-
tion (3) to compute retardation force. For aircraft having a large reduc-
tion in wheel load due to wing 1lift, it is necessary to compute the verti-
cal tire deflection during take-off roll by the following means.

Test results from the present investigation indicate that negligible T
differences exist between the static and freely rolling vertical-tire-
deflection characteristics of the test specimen up to the maximum test
forward speeds (approximately 180 feet per second). It is assumed,
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therefore, that the static vertical-tire-deflection characteristics
represent the take-off condition (rolling tire) with small loss in
accuracy. If static vertical-load-deflection curves for the tires of
the asirplane under consideration are unavailable, the static vertical
deflection for each tire and vertical-load condition may be determined
by the following equation obtained from reference 2:

F
5 = 2,8 + Wiy (4)
2.4(p + 0.0Bpr)\ﬁ;i

If retardation forces due to spray impingement on other aircraft surfaces
are disregarded, the total retardation force acting on an aircraft due to

slush or water F is at any instant

X,8,€

Fx,g,e = Nan,g,n + NmFx,g,m

The aircraft deceleration due to slush or water at any instant is

Fx,g,¢€
ba=24
an = - (5)
The slush-take-off calculation procedure requires that the variation of
aircraft horizontal acceleration with forward velocity during take-off
roll on a dry runway be known. A typical variation is represented in
sketch 1.

0 Dry-runway acceleration, a

1
o 5 Wet-runway acceleration, a, = a - a,
e
2
o
£
e ™~
>
s

N
~N
0 1 2

Velocity, Vg

Sketch 1.
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The net airplane acceleration ay (dashed curve) on a slush- or water-
covered runway may be obtained by subtracting a, (calculated from

eq. (5)) from the acceleration on a dry runway at each velocity increment
considered.

The incremental distance traversed by the aircraft in going from
VH,O to VH,l = ASl;

Vo ¥ - (VA2
pe, = L1) = ('m,0) (6a)

an,O + an,l

In the same manner, the incremental distance traversed in going from
VH,]_ to VH)2 = ASg;

ASQ - (VH)E)E - (VH:l)e (6b)
an,l + an,2

The curve of forward velocity plotted against runway distance for the
take-off roll may be step Integrated from equations (6).

The comparison between an actual take-off in 0.6 inch of slush for a
four-engine jet transport (ref. 4) and the predicted take-off distance
obtained by use of this method is presented in figure 13. The prediction
overestimates the actual take-off distance by 500 feet.

Effect of Slush Depth on Take-Off Distance
The predicted increase in take-off distance required for an airplane

taking off on runways covered with slush to depths equal to 0.5, 1.0, 1.5,
and 2.0 inches is shown in figures 1k and 15 for two different airplane

take-off thrust conditions. Also shown in these figures are the variations

of airplane net acceleration and slush retardation force with airplane
forward velocity. The data shown indicate that, as the slush depths
increase, the aircraft net acceleration is reduced with correspondingly
longer take-off distances being required.

Increasing the aircraft take-off thrust, of course, increases an
aircraft's performance on slush-covered runways as is shown in figures 1k
and 15. If the maximum commercial runway length available is 10,000 feet,
the take-off of an airplane having a 13,000-pound-thrust engine configu-
ration is marginal for a slush depth of 1 inch and impossible for slush
depths of 1.5 and 2.0 inches. The take-off of an airplane having a

17,000-pound-thrust engine configuration is marginal only for the 2.0-inch

OO\
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slush depth. It should be noted that the possibility of severe damage
to airplane surfaces under spray impingement might practically limit the
slush depth permissible for take-off even if the airplane has the capa-
bility for take-off in greater slush depths.

CONCLUSIONS

Under the test conditions for the experimental data on a 32 x 8.8,
type VII, 22-ply-rating rib-tread airplane tire and the assumptions made
in the studies described in this report, the following conclusions may
be stated with respect to the unbraked rolling of aircraft tires and
airplanes on slush- or water-covered runways:

1. The retardation forces measured on a tire rolling in slush and
water suggests a parabolic variation with increasing forward velocity.

2. The retardation force acting on a tire on a water-covered runway
increases approximately linearly with increasing water depth.

3. Data obtained by use of the retardation-force equation were in

reasonable agreement with experimental data when drag coefficients between

0.70 and 0.75 were used.

4, Calculations in which the retardation-force equation was used
together with the horizontal acceleration and velocity characteristics
of a jet transport operating on a dry runway were in good agreement with
results obtained in an actual slush take-off of this airplane.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Field, Va., August 15, 1960.
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Figure 2.~

Test fixture

Vertical ani drag axle
gccelercmeters

L-60-6.1
suspended below main carriage shown in figure 1.
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L-1260

L-00-673

(a) Snow ice being deposited in trough. L-60-6T4

Figure 5.- Slush trough at landing-loads track.
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L-00-075

L-60-676
(v) Slush being trimmed to a 2-inch depth immediately before a test run.

Figure 5.- Continued.
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(¢) Appearance of slush trough

Figure 5.-

immediately after a

Concluded.

test

L-60-682

run.
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Figure 12.- Tire cross section.

0921-1



L-1260

iy

27

1601
VAR Lift=off~——
140+
—— Dry runway
2%47\\\\b Predicted; p = 1.65 slugs/rt3
\\\\ — - 0.5 in. slush
— -~ - 06 in. slush
120
Actual take-off in 0.6 in.
O slush; p.= 1.55 to 1.7k
slurs/ft”; (def. W) ’
100t
Lig]
e
Q
£
g
2 80 Gross weight======= 210,000 1b
e Alf g=-mmmmm o Sea level
3 Temp,============== L2oF
° Wing====-- e ———— 7.3 knots head wind
; Runway slopg==------ Zero
I Flaps==-==~=m====w-~ 30°
E 60k Enpines==—==-==c=-- Ly operating at .
S dry take-off
29 thrust
Turbo-compressors--0One coreratinc
Take=olf{ tirust----13,000 1b/engine
Lo
20
q
| | | | | o
0 2 L 6 8 10 12 X 16°

Runway distance, ft

Figure 13.- Comparison of the calculated take-off distance with the
actual take-off distance required for a four-engine jet transport on
a runway covered with 0.6 inch of slush.
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Figure 1lk.- Effect of slush depth on the take-off distance required for
a four-engine jet transport operating at 210,000 pounds gross weight
with 13,000-pound-thrust engines.
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Figure 15.- Effect of slush depth on the take-off distance required for
a four-engine jet transport operating at 210,000 pounds gross welight
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